2,866 research outputs found

    Direct numerical simulation of a transitional temporal mixing layer laden with multicomponent-fuel evaporating drops using continuous thermodynamics

    Get PDF
    A model of a temporal three-dimensional mixing layer laden with fuel drops of a liquid containing a large number of species is derived. The fuel model is based on continuous thermodynamics, whereby the composition is statistically described through a distribution function parametrized on the species molar weight. The drop temperature is initially lower than that of the carrier gas, leading to drop heat up and evaporation. The model describing the changes in the multicomponent (MC) fuel drop composition and in the gas phase composition due to evaporation encompasses only two more conservation equations when compared with the equivalent single-component (SC) fuel formulation. Single drop results of a MC fuel having a sharply peaked distribution are shown to compare favorably with a validated SC-fuel drop simulation. Then, single drop comparisons are performed between results from MC fuel and a representative SC fuel used as a surrogate of the MC fuel. Further, two mixing layer simulations are conducted with a MC fuel and they are compared to representative SC-fuel simulations conducted elsewhere. Examination of the results shows that although the global layer characteristics are generally similar in the SC and MC situations, the MC layers display a higher momentum-thickness-based Reynolds number at transition. Vorticity analysis shows that the SC layers exhibit larger vortical activity than their MC counterpart. An examination of the drop organization at transition shows more structure and an increased drop-number density for MC simulations in regions of moderate and high strain. These results are primarily attributed to the slower evaporation of MC-fuel drops than of their SC counterpart. This slower evaporation is due to the lower volatility of the higher molar weight species, and also to condensation of already-evaporated species on drops that are transported in regions of different gas composition. The more volatile species released in the gas phase earlier during the drop lifetime reside in the lower stream while intermediary molar weight species, which egress after the drops are entrained in the mixing layer, reside in the mixing layer and form there a very heterogeneous mixture; the heavier species that evaporate later during the drop lifetime tend to reside in regions of high drop number density. This leads to a segregation of species in the gas phase based on the relative evaporation time from the drops. The ensemble-average drop temperature becomes eventually larger/smaller than the initial drop temperature in MC/SC simulations. Neither this species segregation nor the drop temperature variation with respect to the initial temperature or as a function of the mass loading can be captured by the SC-fuel simulations

    14

    Full text link

    Simulations of Evaporating Multicomponent Fuel Drops

    Get PDF
    A paper presents additional information on the subject matter of Model of Mixing Layer With Multicomponent Evaporating Drops (NPO-30505), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 55. To recapitulate: A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The model is used to perform direct numerical simulations in continuing studies directed toward understanding the behaviors of sprays of liquid petroleum fuels in furnaces, industrial combustors, and engines. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and drops, respectively, and incorporates a concept of continuous thermodynamics, according to which the chemical composition of a fuel is described by use of a distribution function. In this investigation, the distribution function depends solely on the species molar weight. The present paper reiterates the description of the model and discusses further in-depth analysis of the previous results as well as results of additional numerical simulations assessing the effect of the mass loading. The paper reiterates the conclusions reported in the cited previous article, and states some new conclusions. Some new conclusions are: 1. The slower evaporation and the evaporation/ condensation process for multicomponent-fuel drops resulted in a reduced drop-size polydispersity compared to their single-component counterpart. 2. The inhomogeneity in the spatial distribution of the species in the layer increases with the initial mass loading. 3. As evaporation becomes faster, the assumed invariant form of the molecular- weight distribution during evaporation becomes inaccurate

    Statistical Model of Multicomponent-Fuel Drop Evaporation for Many-Drop Flow Simulations

    Get PDF
    A statistical formulation is developed describing the composition in an evaporating multicomponent-fuel liquid drop and in the gas phase surrounding it. When a complementary discrete-component model is used, it is shown that, when drops are immersed in a carrier gas containing fuel vapor, condensation of species onto the drop results in the development of a minor peak in the liquid composition probability distribution function (PDF). This peak leads to a PDF shape that can be viewed as a combination of two gamma PDFs, which is determined by five parameters. A model is developed for calculating the parameters of the two combined gamma PDFs. Extensive tests of the model for both diesel and gasoline show that the PDF results replicate accurately the discrete model predictions. Most important, the mean and variance of the composition at the drop surface are in excellent agreement with the discrete model. Results from the model show that although the second peak is minor for the liquid PDF, its corresponding peak for the vapor distribution at the drop surface has a comparable magnitude to and sometimes exceeds that corresponding to the first peak. Four-parameter models are also exercised, and it is shown that they are unable to capture the physics of the problem

    Les perceptions des violences sexuelles commises sur enfants en Belgique (1830-1867) : construction juridique, pratique répressive et réactions sociales.

    Get PDF
    Les perceptions des violences sexuelles dans leurs multiples formes sont aussi variables que le sont les mentalités elles-mêmes. Des mentalités qui « n’existent jamais comme des structures planant au-dessus des réalités », mais qui « s’enracinent dans des temps, des lieux, des groupes et des êtres humains ».Qu’il s’agisse du regard du législateur, de ceux qui sont amenés à juger (magistrats, jurés, médecins) ou des familles des victimes, les sensibilités diffèrent et évoluent tout au long du ..
    • …
    corecore